LETTERS TO THE EDITOR, J. Pharm. Pharmac., 1967, 19, 855

Istituto di Ricerche Farmacologiche "Mario Negri", Via Eritrea, 62, 20157 Milan, Italy.

A. Jori C. Pugliatti

July 19, 1967

References

Brodie, B. B., Gillette, J. R. & La Du, B. N. (1958). Ann. Rev. Biochem., 27, 427-454. Consolo, S., Dolfini, E., Garattini, S. & Valzelli, L. (1967). J. Pharm. Pharmac., 19, 253-256.

Dubnick, B., Morgan, D. F. & Phillips, G. E. (1963). Ann. N.Y. Acad. Sci., 107. 914-923.

Dunlop, E., De Felice, E. A., Bergen, J. R. & Resnick, O. (1964). Proc. Europ. Soc. for the Study of Drug Toxicity, 4, 46-54.
 Feldman, P. E. (1963). Ann. N.Y. Acad. Sci., 107, 1117-1130.

Hammer, W. & Sjöqvist, F. (1966). Proc. of the First Int. Symp. on Antidepressant Drugs. Editors Garattini, S. & Dukes, M. Excerpta Medica Found., Int. Congr. Series No. 122, p. 279-289.

Horita, A. (1966). Biochem. Pharmac., 15, 1309-1316.

Jori, A., Carrara, C., Paglialunga, S. & Garattini, S. (1965). J. Pharm. Pharmac., 17, 703-709.

Kato, R., Chiesara, E. & Vassanelli, P. (1963). Biochem. Pharmac., 12, 357-364. Sjöqvist, F. & Gillette, J. (1965). Life Sci., 4, 1031-1036. Tedeschi, D. H., Tedeschi, R. E. & Fellows, E. J. (1959). J. Pharmac. exp. Ther., 126, 222-232.

Valzelli, L., Consolo, S. & Morpurgo, C. (1966). Proc. of the First Int. Symp. on Antidepressant Drugs. Editors Garattini, S. & Dukes, M. Excerpta Medica Found., Int. Congr. Series, No. 122, p. 61-69.
Weissbach, H., Smith, T. E., Daly, J. W., Witkop, B. & Udenfriend, S. (1960).

J. biol. Chem., 235, 1160-1163.

Effects of ethyl 3-acetamido-4H-pyrrolo[3, 4-c]-isoxazole-5(6H)carboxylate on tissue levels of catecholamines and 5-hydroxytryptamine in the rat

SIR,—Various agents have been found which cause a marked lowering of the tissue levels of catecholamines or 5-hydroxytryptamine (5-HT) or both. Some of these depletors, such as α-methyldopa, guanethidine or reserpine, are used in hypertension. The compound, ethyl 3-acetamido-4H-pyrrolo-[3,4-c]isoxazole-5(6H) carboxylate (I;CL-62375), has recently been found to cause hypotension in the rat. We now report that administration of this compound to the rat causes alterations in the tissue levels of catecholamines and 5-HT.

Brain catecholamine levels (Lippmann & Wishnick, 1965), brain 5-HT (Bogdanski, Pletscher & others, 1956), heart noradrenaline (Anton & Sayre, 1962) and adrenal catecholamines (Lippmann & Wishnick, 1965), were measured in female rats, Sherman strain, of about 150 g.

CL-62375 was administered intraperitoneally in a single injection (0.5 ml 1%) starch, M/15 potassium phosphate buffer, pH 7·0) at 100, 150, 250 or 400 mg/kg and the animals were decapitated 5 hr later. In the heart there was a decline in the noradrenaline level of 70, 42 and 35% at 250, 150 and 100 mg/kg, respectively. In the brain there was a lowering in the catecholamine content of 70% at 250 mg/kg and 40% at 150 mg/kg. The brain 5-HT showed a maximum decline of 30% at the 250 mg/kg level. The 400 mg/kg level was lethal. Thus, there was an appreciable effect on the catecholamine levels in the heart and brain whereas there was only a slight effect on the 5-HT in the brain. The animals were not sedated and showed only a slight ptosis.

A dose of 50 mg/kg of CL-62375 was administered intraperitoneally three times at 3 hrly intervals and the animals were killed 2 hr after the last injection. A decline of 59% in the noradrenaline level of the heart (μ g/g \pm s.e.: control $1\cdot07\pm0\cdot06$; treated $0\cdot44\pm0\cdot04$, $P<0\cdot001$) and a 33% decline in the catecholamine content (μ g/g \pm s.e.: control $0\cdot33\pm0\cdot03$; treated $0\cdot22\pm0\cdot006$, $P<0\cdot05$) of the brain were observed. There was a 59% lowering of the brain 5-HT (μ g/g \pm s.e.: control $0\cdot83\pm0\cdot16$; treated $0\cdot34\pm0\cdot02$, $P<0\cdot001$). A 31% drop in the catecholamine level of the adrenals also occurred (μ g/pair \pm s.e.: control $22\cdot22\pm0\cdot96$; treated $15\cdot33\pm0\cdot27$, $P<0\cdot001$). After the first treatment the animals exhibited a slight ptosis and were not sedated; subsequent treatments did not cause sedation.

To determine the duration of the effects of repeated administration of CL-62375, the animals received 3 injections (50 mg/kg, i.p.) at 3 hrly intervals. The level of noradrenaline in the heart declined 59, 67 and 47% at 2, 8 and 18 hr, respectively, after the last treatment. Thus under these conditions a maximum depletion was observed at 8 hr and the levels were still appreciably lowered after 18 hr. In the brain, the catecholamine levels dropped 33% at 2 hr after the last dose and no significant reduction was observed after 8 or 18 hr. The brain 5-HT was lowered 59, 67 and 40% after 2, 8 and 18 hr.

A decline in the endogenous biogenic amine levels may arise from an alteration in the storage mechanisms; i.e., uptake and release, or an alteration in the synthesis of the amines. The effects of CL-62375 can be compared with compounds exhibiting these activities; i.e., α -methyl-m-tyrosine, a releaser, and α -methyltyrosine, a synthesis inhibitor. After a single administration CL-62375, α -methyl-m-tyrosine (Hess, Connamacher & others, 1961; Weissmann & Koe, 1965) and α -methyltyrosine (Spector, Sjoerdsma & Udenfriend, 1965) are similar in that they cause an appreciable depletion of both heart and brain catecholamines and cause only a small or no decrease in 5-HT levels. After repeated administration CL-62375 exhibits a decline in catecholamines similar to that produced by α -methyltyrosine (Spector & others, 1965); in contrast, CL-62375 causes a large decrease in the brain 5-HT whereas α -methyltyrosine has no effect (Spector & others, 1965). The noradrenaline-depleting action of CL-62375 might thus be the basis for its hypotensive activity.

Department of Chemical Pharmacology, Lederle Laboratories, American Cyanamid Co., Pearl River, New York, U.S.A. W. LIPPMANN* M. WISHNICK

August 8, 1967

References

Anton, A. H. & Sayre, D. F. (1962). J. Pharmac. exp. Thér., 138, 360-375.
Bogdanski, D. F., Pletscher, A., Brodie, B. B. & Udenfriend, S. (1956). Ibid., 117, 82-88.
Hess, S. M., Connamacher, R. H., Ozaki, M. & Udenfriend, S. (1961). Ibid., 134,

129-138.

Lippmann, W. & Wishnick, M. (1965). *Ibid.*, **150**, 196–202.

Spector, S., Sjoerdsma, A. & Udenfriend, S. (1965). Ibid., 147, 86-95.

Weissman, A. & Koe, B. K. (1965). Life Sci., 4, 1037-1048.

^{*} Present address: Ayerst Laboratories, Montreal, Quebec, Canada.